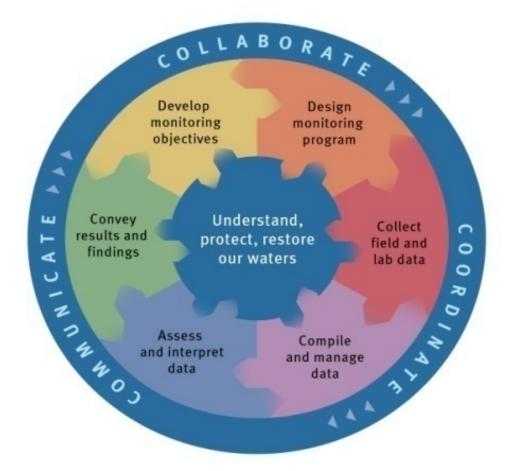


NATIONAL WATER QUALITY MONITORING COUNCIL

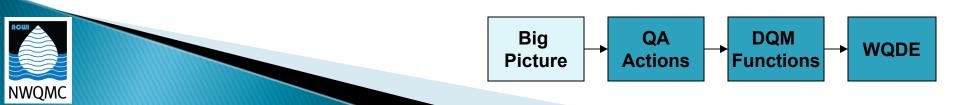
Working Together for Clean Water

From Quality Assurance to Data Elements: Making the Connections for Sensors


Revital Katznelson and Daniel J. Sullivan NWQMC 2012, Portland, OR

Today's Topics

- The Big Picture, and how the ASW products fit in
- Actions to assure, document, and share data quality information
- Data Quality Management (DQM) Functions Time Line
- The language of records and communication
- Sensors Data Elements



The Monitoring Framework, NWQMC 2002

The Field Deployment Guide, ASW 2010

http://watersensors.org

NWQMC

Contents of the Field Deployment Guide

- System selection the type of monitoring system that will be needed
- Site selection the factors to consider when choosing the best sampling location
- Installations platform design, representativeness, safety considerations, maintenance, and requirements for power and telemetry
- Documentation recommendations for photo and written site and installation documentation

The QA (ACRR) Matrix, ASW 2010

http://watersensors.org

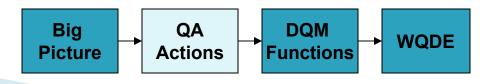
Methods and Data Comparability Board

Aquatic Sensor Workgroup

Actions to Affect, Check, Record, and Report the quality of monitoring data (ACRR)

Pre-Event Calibration

A Monitoring Result is Born

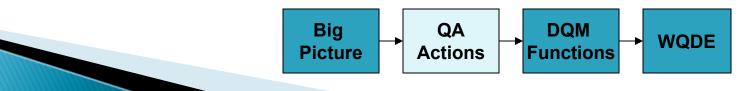


NWQMC

ACRR for accuracy (generic)

- AFFECT Calibrate
- CHECK Conduct accuracy check (compare to Standard)
- RECORD instrument reading +"true" value of Standard
- REPORT diff. from "true" value, or % accuracy

AFFECT [Control] (act to influence the outcome)	CHECK (test to evaluate or verify)	RECORD (keep everything documented)	REPORT (communicate the data quality indicator)			
Quality Assura	nce Actions	Documentation Actions				
calibrate (adjustable- reading instruments)	conduct accuracy check (all instruments)	instrument reading and "true" value of Standard	Accuracy (bias): Instrument's difference from "true" value, in measurement units or as a percentage of Standard's value			



ACRR for precision (generic)

- AFFECT Use consistent procedures
- CHECK Conduct precision checks
- RECORD results of repeated measurements
- REPORT Rel. % diff, SD, CV

AFFECT [Control] (act	CHECK (test to	RECORD (keep	REPORT (communicate the		
to influence the	evaluate or verify)	everything	data quality indicator)		
outcome)		documented)			
Quality Assura	nce Actions	Documentation Actions			
use consistent	conduct precision	results of repeated	Relative Percent Difference ,		
procedures under	checks (repeat	measurements	Standard Deviation, or		
same conditions	measurements of same)		Coefficient of Variation		

(Matrix screenshot)

Technology	data quality aspect	Mode	AFFECT [Control] (act to influence the outcome)	Check (test to evaluate or verify)	Record (keep everything documented)	Report (communicate the data quality indicator)
			Quality Assurance	Actions	Document	ation Actions
	Accuracy /Bias	Attended	Conduct one-point calibration in the lab, at a value in the middle of anticipated environmental range, at room temperature [sp1-3] , before each Trip. Conduct two point calibration in the field, at values that bracket expected range, at stream temperature, before first use of the day. Make sure the probe is properly hydrated before calibration and before each use; assure sufficient voltage	Conduct a one-point accuracy check in the lab, at a mid-range value, at room temperature [sp2], within 24 hrs of Trip's end	Temperature of Standard, Instrument conductivity reading, temperature compensation factor (if needed), and "true" value of Standard	Report bias: Instrument drift, i.e., difference from known ("true") value of Standard, expressed either in measurement units or as percent of Standard's "true" value, whichever is higher.
ity cell	Accuracy/Bias	Unattended	Conduct two-point calibration in the lab, at zero and at value higher than expected range, at room temperature, before deployment and at every maintenance event (if needed)	Conduct three-point accuracy check, w Standards at min/mid/max values of expected range, plus a zero check in air, at room or field temperature, within 24 hrs of retrieval and at every maintenance event, before and after cleaning.		Report bias: Instrument drift, i.e., difference from known ("true") value of Standard, expressed either in measurement units or as percent of Standard's "true" value, whichever is higher.
conductivity cell	Precision	Attended	use consistent procedures under same conditions	Repeat measurements 3-5 times after the reading has stabilized, under controlled (non-changing) environment in the lab, during every calibration or accuracy check event.	Results of the 3-5 measurements after stabilization;	Compute the Standard Deviation of the 3-5 values and report in measurement units [a4]
	Precision	Unattended	Use consistent procedures under same conditions	Repeat measurements 3-5 times after the reading has stabilized, under controlled (non-changing) environment in the lab, during every calibration or accuracy check event.	Results of the 3-5 measurements after stabilization;	Compute the Standard Deviation of the 3-5 values and report in measurement units [a4]
	Lack of interference or contamination	Attended	clean probes			
	Lack/Extent of interference or contamination	Unattended	clean probes, treat with anti-fouling agents, adjust deployment duration or maintenance intervals to local conditions	Run fouling comparison test: Measure stream water (in situ or in bucket) before and after cleaning the probe.	Pre-cleaning inspection and photographic records of fouling, Instrument readings before and after probe fouling removal	

The QA (ACRR) Matrix, ASW 2010

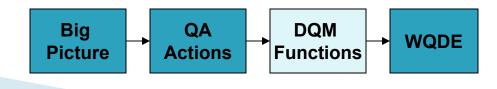
- ASW and Review Panel recommended the minimum actions required for generation of data of known and documented quality
 - Calibration/accuracy check frequency and number of points
 - Repeated measurements
 - Fouling checks
- Various aspects of data quality: accuracy, precision, lack/extent of fouling, etc.
- Attended and unattended modes
- A page for each WQ characteristic, and a general sensors page
- Notes and monitoring tips

The Sensors Data Quality Management (DQM) Functions Timeline, Part1

Pre-deployment	Calibration	Deployment	Inspections/ Maintenance	Retrieval			
System Site Installations selection	Calibrate Check Program precision sonde	Select Record location conditions	Check Service Reference Instrument	Examine Inspect Check Save Check Download In-situ fouling file accuracy data			

The Sensors Data Quality Management (DQM) Functions Timeline, Part 2

Data	Data verification (identify and isolate "real" data)		Data validation			Uncertainty Assessment				Data correction (altered Result values)					
Export data	Verify deployment	Trim	Remove artifacts	Compare diagnostics to specs	Compare performance w criteria	Validate data			Calculate precision	compare to MQOs	Qualify data	Analyze uncertainty	Correct for drift	Correct for fouling	Grade data


Essential post-event accuracy check records: examples

Instrument ID	Character -istic	Units	Standard	"True" Value	Reading in Standard	Differen -tial	Percent Accuracy
DOP-STB01	DO	% sat	humid air	100	97.3	-2.7	-2.7
DOP-STB01	DO	% sat	saturated water	100	95	-5	-5.0
ECP-STB01	Sp.Cond	uS	STB-EC10y	1412	1410	-2	-0.1
PHP-STB01	рН	рН	STB-PH20f	7	7.05	0.05	0.7
PHP-STB01	рН	рН	STB-PH29b	9	8.98	-0.02	-0.2
TTP-STB01	Temp	С	TR-STB43	21.5	21.19	-0.31	-1.4
TTP-STB01	Temp	С	TR-STB43	21	21.21	0.21	1.0

Differential = (Reading in Standard) - (True value)

Percent accuracy = $((Reading in Standard) - (True value)) \times 100$ (True value)

... and here is how you can report accuracy and precision

Instrument ID	Characteristic (Parameter)	Results Units	Result	Accuracy	Precision
TTP-STB01	Temperature, water	С	14.57	-1.4 %	0.06 %, RPD
ECP-STB01	Specific conductivity	uS/cm	758.7	-0.14 %	0.40 %, RPD
PHST-STB03	ЗјрН	рН	8	0.5 Res.	0.5 Resolution
PHP-STB01	рН	рН	8.34	0.7%	0.12 %, RPD

When planning for monitoring, consider:

Big

Picture

QA

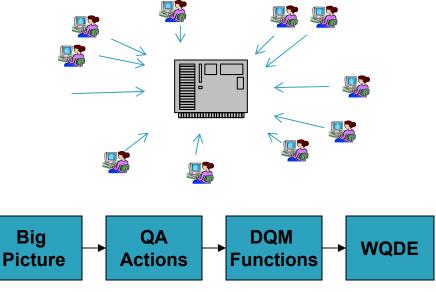
Actions

DQM

Functions

WQDE

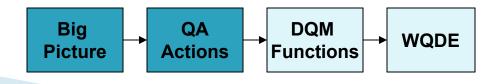
- Which protocol should be followed??
- Who will performs which functions?
 - Field Operator
 - Data manager
 - Other


NWOM

- What electronic platform are they using?
- What software tools do they have?

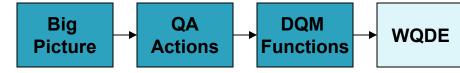
Wouldn't it be nice if...

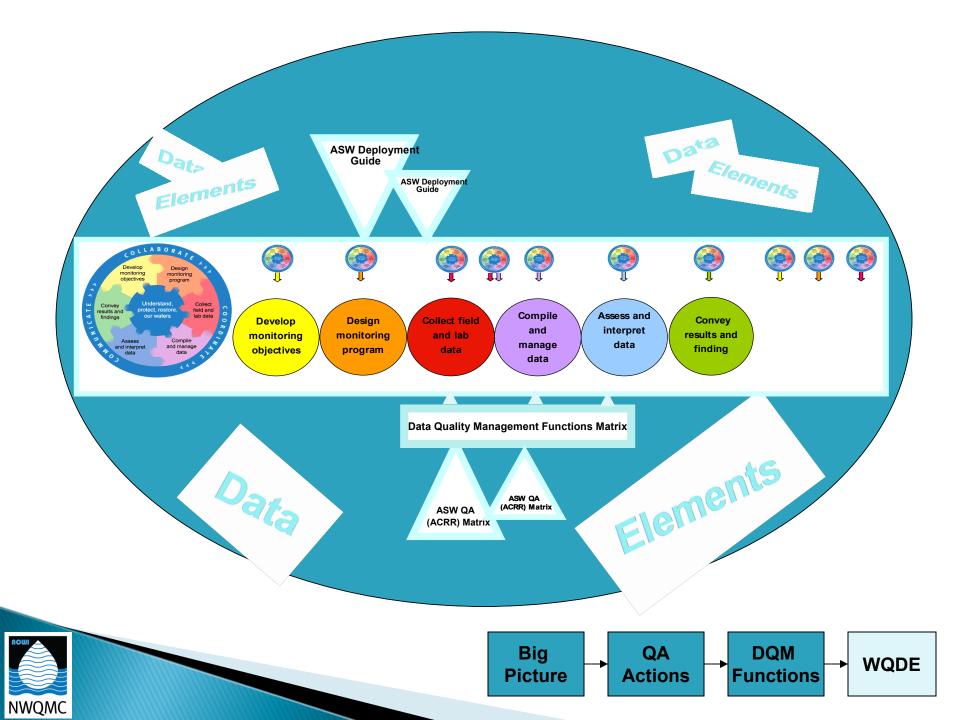
NWOM


- Sensors protocols are standardized across agencies and groups?
- Everyone validates data, calculates error, and corrects data in the same way, using standardized software packages?
- Everyone reports all relevant bits of information needed for data sharing?

Phase	Calibration			Retrieval							
Task Name	Calibrate	Check precision	Program sonde	Examine In situ	Inspect	Check fouling	Save file	Check accuracy	Download data		
Task content	Calibrate electrode w Standard buffers	Run precision check in situ	Program sonde for deployment	· · · ·	inspect retrieved sonde	Ŭ	close sonde	checks w Standard buffers	download sonde file to sonde software on computer		
Records	'calibration records' package including diagnostics	repeated measurements	Time, place, initial instrument readings		notes (e.g.,covered w biofilm), photos	readings before and after cleaning		'accuracy check records' package including diagnostics	file ID etc.		
Data Elements subject	7.9.3, 7.9.4, 7.9.5	7.10.1, 7.10.2	5.1.1, 6.4.4	6.4.3, 6.4.6, etc.	6.4.3, 6.4.6, etc.	7.10.1, 7.10.2	6.4.4	7.10.1 to 7.10.4	6.4.4		

ACW


NWQMC



Water Quality Data Elements

Category number	Category (Module) name	Group number	Group name
1	Monitoring Project ("Contact")	1.1	Project Identifiers
-		1.2	Organization identifiers
		1.3	Project Contacts
2	Result	2.1	Result (how much?)
		2.2	Characterisitc (of what?)
		2.3	Result descriptors
3	Study Dataset ("Reason")	3.1	Identifiers
		3.2	Intent
		3.3	Design (more)
4	Site Visit ("Date/time")	4.1	Trip
		4.2	Visit
5	Location		Site identifiers
			Site Description
			Site Location
6	Activity-Field ("sample collection")		Identifiers, type
			Spatial descriptors
			Sample (in a jar)
7	Measurement System - field&lab		Instruments and lab
	("Sample Analysis")		batches
			Method
			Quality checks

Water Quality Data Elements

Sensors Data Elements Lists, 2012

- Comprehensive list of data elements for use at the Project level ("the Long List"), aligned with WQX data dictionary
- A subset of data elements for data sharing beyond the projects
- "Shared" data elements are categorized as Essential, Recommended, or Conditional per ASW consensus

• Next Steps:

- Approval of "shared" data elements list for sensors by ACWI
- Continue work with EPA as they add time series data to WQX
- Continue dialog with the WaterML team and OGC

Thanks for Listening!

- Revital Katznelson, <u>revitalk@sbcglobal.net</u>
- Dan Sullivan, <u>djsulliv@usgs.gov</u>

Special Thanks to the Sensor Workgroup

- Chuck Dvorsky TCEQ
- Rick Wagner USGS
- Pete Penoyer and Dean Tucker NPS
- Mike Sadar Hach
- Rob Ellison and others YSI
- Mary Giorgino USGS
- Mario Tamburri ACT
- Janice Fulford USGS
- Ed Quilty Al
- And many others since 2008!

